近日中國科學院長春光學精密機械與物理研究所光子實驗室楊建軍團隊和山西長治學院、美國羅切斯特大學合作提出了一種新型的應對方式——飛秒激光等離子體光刻技術(FPL)。通過均勻化入射激光通量的寬視場照射以及調控激光與物質耦合強度和瞬時局部自由電子密度分布等,合作者們在百納米厚的硅基氧化石墨烯(GO)薄膜表面實現了高質量微納周期結構的快速制備。

自石墨烯被首次發現以來,“二維材料”逐漸走入人們的視野,并成為材料領域的研究熱點。然而如何突破材料本身性能,拓展其物理化學性質,是實現其走向應用的關鍵環節。通過自組裝,電子束刻蝕和極紫外光刻等技術在石墨烯上制備微納結構,能夠調控其帶隙、吸收、載流子遷移率等性能。但這些方法存在著耗時、成本高昂,缺乏通用性等問題。因此,如何降低成本,高效制備微納結構石墨烯,成為目前需要解決的重要問題。

飛秒激光加工技術憑借著超高峰值功率和超短脈沖持續時間的獨特優勢,被廣泛應用于多種材料的超精細微納加工領域。然而,以激光直寫為例,雖然其精度很高,但在超精細微納制備上,效率仍有待提高。同時保證加工精度和加工效率是該技術需要解決的主要問題之一。顯然,如何利用靈活簡便的加工手段解決加工精度和加工效率問題是拓展飛秒激光實用化的關鍵所在。

針對上述問題,近日中國科學院長春光學精密機械與物理研究所光子實驗室楊建軍團隊和山西長治學院、美國羅切斯特大學合作提出了一種新型的應對方式——飛秒激光等離子體光刻技術(FPL)。通過均勻化入射激光通量的寬視場照射以及調控激光與物質耦合強度和瞬時局部自由電子密度分布等,合作者們在百納米厚的硅基氧化石墨烯(GO)薄膜表面實現了高質量微納周期結構的快速制備。

這項工作首次證明了FPL技術在二維薄膜材料上能夠實現大面積高質量亞微米周期結構(周期約680納米,寬度約400納米)(rGO-LIPSS)的快速制備。不僅如此,得益于飛秒激光的非線性光學特點,FPL技術加工過程不易受材料表面缺陷、雜質等因素的影響,加工基底也不易受到材料種類的限制。加工材料表現出了優異的機械性能,可以利用傳統的濕轉移法進行完整轉移。這為相關材料周期性微納結構的靈活制備奠定了基礎。

該研究成果以High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse 為題發表在《光:科學與應用》(Light: Science & Applications)上。

圖1 基于飛秒激光等離子體光刻技術(FPL)的GO薄膜表面微納加工

圖1 基于飛秒激光等離子體光刻技術(FPL)的GO薄膜表面微納加工

圖2 基于FPL技術rGO-LIPSS的靈活制備

圖2 基于FPL技術rGO-LIPSS的靈活制備

圖3 基于rGO-LIPSS的光電響應器件特性研究

圖3 基于rGO-LIPSS的光電響應器件特性研究

[責任編輯:陳語]

免責聲明:本文僅代表作者個人觀點,與電池網無關。其原創性以及文中陳述文字和內容未經本網證實,對本文以及其中全部或者部分內容、文字的真實性、完整性、及時性,本站不作任何保證或承諾,請讀者僅作參考,并請自行核實相關內容。涉及資本市場或上市公司內容也不構成任何投資建議,投資者據此操作,風險自擔!

凡本網注明?“來源:XXX(非電池網)”的作品,凡屬媒體采訪本網或本網協調的專家、企業家等資源的稿件,轉載目的在于傳遞行業更多的信息或觀點,并不代表本網贊同其觀點和對其真實性負責。

如因作品內容、版權和其它問題需要同本網聯系的,請在一周內進行,以便我們及時處理、刪除。電話:400-6197-660-2?郵箱:[email protected]

電池網微信
新能源
新材料
石墨烯